Researcher ORCID Identifier
0000-0002-8530-9984
Graduation Year
2023
Document Type
Campus Only Senior Thesis
Degree Name
Bachelor of Arts
Department
Biology
Second Department
Politics and International Relations
Reader 1
Sarah Gilman
Reader 2
Nancy Neiman
Reader 3
Jeremy Testa
Rights Information
© 2022 Desa K Bolger
Abstract
As aquaculture increases in the United States (Ray et al. 2021), ecosystems may improve from oysters’ ability to reduce eutrophication (Newell 1988) and the economy could benefit from the promotion of additional harvests and nitrogen-crediting systems. Although many studies have examined Crassostrea virginica (the Eastern oyster) and its relationship to the nitrogen cycle in natural settings, few have studied nitrogen cycling and associated ecosystem effects of on-bottom aquaculture. I hypothesized that Eastern oysters in on-bottom cages in high-energy farms have limited effects on nitrogen cycling due to high flow rates dispersing biodeposits. To test this hypothesis, I measured porewater concentrations and surface sediment samples (nitrogen, phosphorus, and carbon) to estimate fluxes and quantify the impacts of oyster aquaculture on sediment biogeochemistry near Solomons Island (Patuxent River) and the Potomac River, both in the Chesapeake Bay system.
Though I detected no sizable difference between the percent carbon and percent nitrogen levels in the surface sediment in either site, porewater data at CBL showed sulfide and ammonium levels were consistently higher in the farms. These elevated levels of estimated ammonium and nitrite fluxes suggested an amplification of remineralization and nitrogen cycling associated with biodeposits concentrated in the farm. At the Potomac site, extremely high porewater concentrations were found at the control location (station 1), which made it challenging to discern farm-associated effects. However, at both the Patuxent and Potomac sites, there was evidence of higher concentrations of particulate carbon and nitrogen beneath cages relative to areas outside of the cages.
This study suggests that high-flow oyster aquaculture farms can concentrate biodeposits in protected areas (e.g., under cages), but that surface sediments are not organic matter enriched, likely because wind and wave energy actively resuspend and mix sediments. These findings support our hypothesis that high energy conditions would limit a farm’s effect on nitrogen cycling. However, the enrichment of organic matter under cages at both sites and porewater nutrient accumulation at CBL did not support our hypothesis and suggest that sediment enrichment with biodeposits does accumulate in more stable environments (porewaters). Future studies, including larger sample sizes and tracking the impacts of cages versus bags, should also be investigated, as these tests may continue to show support for implementing oyster aquaculture in nitrogen-crediting systems.
Recommended Citation
Bolger, Desa, "Oyster Aquaculture and Nitrogen Cycling: Ecosystem Service Provider or Agent of Excess?/Selfish about Shellfish: Special Interest Politics and Oyster Aquaculture" (2023). Scripps Senior Theses. 2010.
https://scholarship.claremont.edu/scripps_theses/2010
This thesis is restricted to the Claremont Colleges current faculty, students, and staff.