Publication Date



Cholera, differential equations, social justice, global health, sanitation, force of infection, SIR model, SIRB model, Haiti, SIMIODE


Mathematics | Physical Sciences and Mathematics | Science and Mathematics Education


Cholera is an infectious disease that is a major concern in countries with inadequate access to clean water and proper sanitation. According to the World Health Organization (WHO), "cholera is a disease of inequity--an ancient illness that today sickens and kills only the poorest and most vulnerable people\dots The map of cholera is essentially the same as a map of poverty." We implement a published model (Fung, "Cholera Transmission Dynamic Models for Public Health Practitioners," Emerging Themes in Epidemiology, 2014) of a SIR model that includes a bacterial reservoir. Bacterial concentration in the water is modeled by the Monod Equation in microbiology. We investigate the sensitivity of the models to some parameters. We use parameter values for cholera in Haiti that are consistent with the ranges in meta-analysis by Fung and other sources. We show the results of our numerical approximation of solutions. Our goal is to use this system of nonlinear ordinary differential equations to raise awareness among the mathematics community of the dynamics of cholera. We discuss the enhancement of undergraduate experiences by motivating learning with a real-world context in social justice implications of global health.

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.