Home > LIBRARY > JOURNALS > CURRENT_JOURNALS > CODEE > Vol. 16 (2023)
Publication Date
4-1-2023
Keywords
Mathematical Modeling, Differential Equations, Immune System Dynamics Under HIV Infection, AIDS, Antiretroviral Therapy, HIV Treatment
Disciplines
Applied Mathematics | Disease Modeling | Ordinary Differential Equations and Applied Dynamics | Science and Mathematics Education | Virus Diseases
Abstract
An inquiry-based project that discusses immune system dynamics during HIV infection using differential equations is presented. The complex interactions between healthy T-cells, latently infected T-cells, actively infected T-cells, and the HIV virus are modeled using four nonlinear differential equations. The model is adapted to simulate long term HIV dynamics, including the AIDS state, and is used to simulate the long term effects of the traditional antiretroviral therapy (ART). The model is also used to test viral rebound over time of combined application of ART and a new drug that blocks the reactivation of the viral genome in the infected cells and locks the HIV virus into a state of latency.
Recommended Citation
Rychagov, Nicole
(2023)
"Modeling Immune System Dynamics during HIV Infection and Treatment with Differential Equations,"
CODEE Journal:
Vol. 16, Article 1.
Available at:
https://scholarship.claremont.edu/codee/vol16/iss1/1
Creative Commons License
Included in
Disease Modeling Commons, Ordinary Differential Equations and Applied Dynamics Commons, Science and Mathematics Education Commons, Virus Diseases Commons