Publication Date



ordinary differential equations, partial fraction expansion, Laplace transform, Fourier series, harmonic


Mathematics | Physical Sciences and Mathematics | Science and Mathematics Education


A generalized method for solving an undamped second order, linear ordinary differential equation with constant coefficients is presented where the non-homogeneous term of the differential equation is represented by Fourier series and a solution is found through Laplace transforms. This method makes use of a particular partial fraction expansion form for finding the inverse Laplace transform. If a non-homogeneous function meets certain criteria for a Fourier series representation, then this technique can be used as a more automated means to solve the differential equation as transforms for specific functions need not be determined. The combined use of the Fourier series and Laplace transforms also reinforces the understanding of function representation through a Fourier series and its potential limitations, the mechanics of finding the Laplace transform of a differential equation and inverse transforms, the operation of an undamped system, and through programming insight into the practical application of both tools including information on the influence of the number of terms in the series solution.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.