Document Type

Article

Department

Mathematics (HMC)

Publication Date

1977

Abstract

An $n$-superconcentrator is an acyclic directed graph with $n$ inputs and $n$ outputs for which, for every $r \leqq n$, every set of $r$ inputs, and every set of $r$ outputs, there exists an $r$-flow (a set of $r$ vertex-disjoint directed paths) from the given inputs to the given outputs. We show that there exist $n$-superconcentrators with $39n + O(\log n)$ (in fact, at most $40n$) edges, depth $O(\log n)$, and maximum degree (in-degree plus out-degree) 16.

Rights Information

© 1977 Society for Industrial and Applied Mathematics

Share

COinS