Document Type

Article

Department

Mathematics (HMC)

Publication Date

1977

Abstract

Throughout, the word "ring" will abbreviate the phrase "commutative ring with identity element 1" unless the contrary is stated explicitly. An ideal I of a ring R is called pseudoprime if ab = 0 implies a or b is in I. This term was introduced by C. Kohls and L. Gillman who observed that if I contains a prime ideal, then I is pseudoprime, but, in general, the converse need not hold. In [9 p. 233], M. Larsen, W. Lewis, and R. Shores ask if whenever the Jacobson radical J(R) of an arithmetical ring is pseudoprime, it follows that J(R) contains a prime ideal? In Section 2, I answer this question affirmatively. Indeed, if R is arithmetical and J(R) is pseudoprime, then the set N(R) of nilpotent elements of R is a prime ideal (Corollary 9). Along the way, necessary and sufficient conditions for J(R) to contain a prime ideal are obtained. In Section 3, I show that a class of rings introduced by A. Bouvier [1] are characterized by the property that every minimal prime ideal of R is contained in J(R). The remainder of the section is devoted to rings with pseudoprime Jacobson radical that satisfy a variety of chain conditions. In particular, it is shown that if R is a Noetherian multiplication ring with pseudoptime Jacobson radical J(R), then J(R) contains a unique minima] prime ideal (Theorem 20), but there is a NoetheIian semiprime ring R such that J(R) is pseudoprime and fails to contain a prime ideal (Example 21).

Comments

Previously linked to as: http://ccdl.libraries.claremont.edu/u?/irw,448.

Publisher pdf, posted with permission.

This article is also available at http://purl.pt/2832.

Rights Information

© 1977 European Mathematical Society

Terms of Use & License Information

Terms of Use for work posted in Scholarship@Claremont.

Included in

Mathematics Commons

Share

COinS