Document Type
Article
Department
Mathematics (HMC)
Publication Date
2-2001
Abstract
We analyze the drunkard's walk on the unit sphere with step size θ and show that the walk converges in order C/sin2(θ) steps in the discrepancy metric (C a constant). This is an application of techniques we develop for bounding the discrepancy of random walks on Gelfand pairs generated by bi-invariant measures. In such cases, Fourier analysis on the acting group admits tractable computations involving spherical functions. We advocate the use of discrepancy as a metric on probabilities for state spaces with isometric group actions.
Rights Information
© 2001 Francis Su
Terms of Use & License Information
This work is licensed under a Creative Commons Attribution 3.0 License.
DOI
10.1214/EJP.v6-75
Recommended Citation
Francis Edward Su. Discrepancy convergence for the drunkard's walk on the sphere. Electron. J. Probab., 6:no. 2, 20 pp. (electronic), 2001.